
School of Science and Technology

Introduction:
In this project we are looking at how the Black Scholes Model can be used to predict European options. 
An option is a contract which depending on its type, gives the holder the opportunity to buy/sell an asset such as a stock for a set price decided on the initial date to be exercised 
at a maturity date .There are two types of options:
• a put option gives the seller the right but not the obligation to sell the product
• a call option gives the right but not option the right to buy the option. 
There are various other ways of making options, two common ones are American options and European options:
• An American option can be exercised at any time throughout the duration of the contract up until the maturity date 
• European options can only be exercised on the Maturity date.
In order for the Black Scholes PDE to be used on these options, they need to satisfy a set of assumptions, these are; 1. that no dividends are paid during the life of the option, 2. 
that the movements of the markets can not be predicted, 3. when buying the option there are no transaction costs, 4. The option is only European and therefore can only be 
exercised on the date of expiration, 5. The assets returns are normally distributed with log and 6. the volatility and the risk-free interest rate are constant and are known.

American options:
For American options we need to find a way to change what we apply the Finite 
difference method, so that the code accounts for the fact that the option can now be 
exercised at any date up until and including the Maturity date. 

In order to make it so we had a code that worked for American Put options we used 
the Successive overrelaxation method (SOR), which is an iterative method of solving 
linear systems and is an extension of the Gauss-seidel Method [2]. 

The boundary conditions for an American Put option are given by [2]: 
P 0, 𝜏𝜏 = 𝐸𝐸 and 𝑃𝑃 𝑆𝑆∗, 𝜏𝜏 = 0.

A key step in the code needed to create these graphs is the addition of a max function, 
which makes sure that the option never drops below 0

𝑣𝑣 = max(𝐸𝐸 − 𝑆𝑆, 0).

This graph shows the prediction of the American put options given by the code created 
using the SOR method:

The graph bellow shows the comparison of American Put options and European Put 
options against the strike price. 

We can see that the price of American Put options never go bellow the Strike price of 
the option but the European put option curve does. 
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Black Scholes Equation :
The Black Scholes Model (BSM) estimates the price of financial instruments, usually 
options. The BSM is only used for European Call options:

The PDE of the Black Scholes equation is [1]:
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏
− 1

2
𝜎𝜎2𝑆𝑆2 𝑑𝑑

2𝐶𝐶
𝑑𝑑𝑑𝑑2

− 𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑟𝑟𝑟𝑟 = 0,

and the exact solution to the Black Scholes PDE are given by the equations: 

𝐶𝐶 𝑆𝑆, 𝑡𝑡 = 𝑆𝑆𝑆𝑆 𝑑𝑑1 − 𝐸𝐸𝑒𝑒−𝑝𝑝 𝑇𝑇−𝜏𝜏 𝑁𝑁 𝑑𝑑2

with:   𝑑𝑑1 =
log 𝑆𝑆

𝐸𝐸 +(𝑟𝑟+12𝜎𝜎
2)(𝑇𝑇−𝑡𝑡)

𝜎𝜎 𝑇𝑇−𝑡𝑡
and 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎 𝑇𝑇 − 𝑡𝑡

Where:
• C= price of the Call option 
• S= current stock price 
• r= risk-free interest rate 
• σ= volatility over time (standard deviation) 
• E= Strike price 
• τ= T-t, with T being the expiration time and t being the current time. 

European Options :
In order to get the code to model European Options in MATLAB, we took the Black 
Scholes PDE and applied the finite difference formula to each derivative in the 
equation. 

To form the complete code this new equation was used along with the Boundary 
conditions that are required for a European Call option which are: 

𝐶𝐶 0, 𝜏𝜏 = 0 and 𝐶𝐶 𝑆𝑆∗, 𝜏𝜏 = 𝑆𝑆∗ − 𝐸𝐸𝑒𝑒−𝑟𝑟𝑟𝑟, 
where 𝑆𝑆∗is a very large value of S as S → 0.

We compared this result to the Black Scholes formula above [1] to verify the code. 

To model European Put options (P) instead, we use the finite difference code but the 
boundary conditions are changed to those needed for Put options: 

𝑃𝑃 0, 𝜏𝜏 = 𝐸𝐸𝑒𝑒−𝑟𝑟𝑟𝑟 and 𝑃𝑃 𝑆𝑆∗, 𝜏𝜏 = 0 .

The result is similar to the Call option graph but goes in the opposite direction. The 
maximum is at 0 instead of the end point and the Value of the option tends 
to zero as it moves to the end point. 

We used the finite difference method again since it is easily generalised for Put 
options (unlike the exact solution), and even extended to more complicated cases 
such as American options, as follows. 

Conclusions: 

• We can see that there are a variety of methods which can be used to predict and 
model different types of options 

• Using the BSM we can see that in simple cases there are ways that we can find an 
exact solution, in this case for European options.

• From this work we can see that there are methods like the finite difference method 
that can easily be adapted to work for other types of options. 
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Introduction

•The concept of “Learning for Mastery” (LFM) was initially popularised by Bloom in a
1968 paper [1].

•There are a range of abilities in classes. Giving all students the same amount of time and
the same resources resulted in most students not mastering the study material.

•The steep ratio between teachers and students presented a challenge in practically im-
plementing LFM. This can be overcome by taking advantage of technological advances.

•However, the usefulness and practicality of many of these methods are not often re-
searched.

•LFM tests are used in the first-year mathematics module Mathematical Methods and
this project investigated the use of these tests in the 2021/2022 cohort, analysing the
effect, if any, of LFM tests on the student’s exam performance.

Modern Mastery with CAS

In order to address the need for a teaching method which allows each student to have as
little or as much practice as needed, we turn to a teaching cycle developed for the application
of Computer Algebra Systems (CAS) in LFM. [2]

Comparison of Bloom’s original Learning for Mastery model
with the modern CAS adjusted version. [2]

With this modernised model, it is much easier to see how CAS could be used to take
advantage of the repetitive need for more formative assessments. CAS can alter and process
mathematical expressions directly without needing every expression’s numerical value. We
use CAS to randomly alter framework questions to create new formative assessments testing
the same skills, with no further input needed from the assessor. The system used to create
our LFM tests is Numbas. Our LFM tests have the following features:

•No time limit.

•Each answer can be checked in real time

•Each answer can be changed and re-checked an unlimited amount of times.

•The final mark achieved is not negatively affected by number of attempts at answers or
time taken.

These features help to put emphasis on the mastery and perfection of each method, rather
than the ability to answer fast and move on even when the content isn’t fully understood.

Discussion & Future Work

With all the analysis performed, there is overwhelming evidence that the LFM tests had an
important role in how the students performed. The LFM tests were significant, not just in
the overall exam performance, but also in each individual topic. Being the most significant
factor, even compared to in-person attendance, online engagement or grade profiles, shows
the importance of their use. The system used to create them is easy to navigate, and if
found to be significant in other modules, there is considerable motivation to use them in
more applications. Although CAS systems lend themselves to STEM subject questions, the
premise of the LFM test is applicable in every department, with multiple-choice or worded
answers being possible in contrast to the typical numerical or algebraic answer.

There have been instances of other departments within STEM using a CAS system for mas-
tery, specifically in an engineering undergraduate degree [2], which also resulted in positive
results. It would be greatly beneficial to trial these tests in other modules or departments
to analyse their potential on a larger scale. Even without the aim of further analysis, these
tests help students get closer to mastery, and that should be a great motivation to imple-
ment them further.

Hypothesis & Testing

To determine the effect, if any, that the LFM tests had on the student’s exam performance,
we decided on two main lines of statistical testing:

• If the students who used LFM tests had significantly better exam results than those who
did not, tested using a 2 sample T-test.

• If LFM results achieved by a student were a significant positive contributing factor to
said student’s exam results, investigated using regression.

With these two tests in mind, we first analysed the overall connection between the use of
any LFM tests and the overall exam performance of students.

Here we see the scatter plot of mastery
test scores and exam scores, with the
related line of best fit using regression.
Both the 2 sample t-test and the regres-
sion analysis resulted in the most signifi-
cant results possible, with a p-value of 0
in each case.

After considering the overall LFM test usage and exam performance, we also saw fit to test
all of the modules’ topics separately. As the LFM tests were created to correspond with
the module, each topic had a corresponding LFM test and exam question(s). Although
this lowers the sample size due to fewer students engaging in every LFM test separately,
the samples all remained considerable, with at least 30 students’ data being used.

MELS FLD PDO I CN ODE MOD

2-sample t-test p-value 0 0 0 0 0.013 0 0.001

Regression analysis p-value 0.007 0.116 0.001 0.049 0.001 0.006 0.045

As shown in the table above, all but one test resulted in a significant result. This strongly
supports the module wide observations.

Modelling Exam Performance

Rigorously investigating the connection between the LFM test and increased exam perfor-
mance is difficult. There are arguments to be made that students who engage in the LFM
tests already show they have a level of motivation higher than the majority of their peers.
This behaviour alone could be seen as a cause for higher exam performance rather than
it being the LFM tests themselves. To be sure of the LFM tests’ significance, especially
compared to other contributing factors, we used Multi-Level Regression to model exam per-
formance with all data available to us. Considering online video engagement is crucial for
this module specifically as all the topics had videos pre-recorded online, with the primary
instruction being to watch the videos before the lectures, as a main introduction to the
material, with the lectures being to answer questions and clarify. Below is the predictors
used within the model with their associated p-value.

Predictor p-value

Total minuted delivered of online videos 0.466

Total views and downloads of online videos 0.695

UCAS tariff points 0.975

Taken Maths A-level (True/False) 0.009

Taken Further Maths A-level (True/False) 0.600

Mathematical Methods attendance 0.041

Course-wide attendance 0.002

Widening participation student (True/False) 0.617

LFM test total percentage 0.000

From these results, we can see the most significant predicting factor is the Mastery test
results, closely followed by the students overall attendance, if the student has previously
taken a Maths A-level, and lastly the module attendance itself.
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INTRODUCTION

Boussinesq-type equations are an approximation to the Navier-Stokes equations
which govern the fluid dynamics of waves on a small scale. They are particularly useful
in coastal engineering and computer modelling of shallow waves [1]. They can also model
longitudinal waves in layered waveguides [2].

In this study we will look at the system of three Boussinesq-type equations with
regular coupling. The initial-value problem for this system, in epsilon form, is

utt − uxx = ε

(
1

2

(
u2
)
xx

+ uttxx − δ1 (u− w)

)
,

wtt − c2
1wxx = ε

(α1

2

(
w2
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xx

+ β1wttxx + γ1 (u− w)− δ2 (w − z)
)
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ztt − c2
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(
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xx

+ β2zttxx + γ2 (w − z)
)
.

However, we will also introduce a scaling to the system as follows; x =
√
εx̃, =

√
εt̃,

u = 1
εũ, w = 1

εw̃ and z = 1
εz̃. It is clear that introducing this scaling leads to the following

system of equations (omitting the tildes)

utt − uxx =
1

2

(
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xx
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2

(
w2
)
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ztt − c2
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α2

2

(
z2
)
xx

+ β2zttxx + ε2γ2 (w − z) .

DERIVING THE DISPERSION RELATION

We want to derive the linear dispersion relation for the above system to help us
identify interesting behaviours in the solution for varying order coefficients. First we ignore
the non-linear terms and so, for the resulting system, we seek solutions of the form

u = u0e
ik(x−pt), w = w0e

ik(x−pt), z = z0e
ik(x−pt),

where k is the wavenumber and p is the phase speed. Now we substitute into the
linearised system, eliminate the exponential terms and then gather like terms to give

(
−k2p2 + k2 − k4p2 + ε2δ1

)
u0 − ε2δ1w0 = 0,

−ε2γ1u0 +
(
−k2p2 + c2

1k
2 − β1k

4p2 + ε2γ1 + ε2δ2

)
w0 − ε2δ2z0 = 0,
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(
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2k
2 − β2k

4p2 + ε2γ2

)
z0 = 0.

This system can be written in the form Au = 0 where u =
(
u0 w0 z0

)T
and

A =

k2
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1− p2
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2
)
− β2k
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 .

Non-trivial solutions exist when det(A) = 0, and this equation is known as the linear
dispersion relation. After some manipulation we get the result

[
k2
(
1− p2

)
− k4p2 + ε2δ1

] [
k2
(
c2

1 − p2
)
− β1k

4p2 + ε2γ1 + ε2δ2

] [
k2
(
c2
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)
− β2k

4p2+
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]
− ε4δ2γ2

[
k2
(
1− p2

)
− k4p2 + ε2δ1

]
− ε4δ1γ1

[
k2
(
c2

2 − p2
)
− β2k

4p2 + ε2γ2

]
= 0.

PLOTTING THE DISPERSION RELATION

Using MATLAB we can plot p against k as well as the group speed cg, defined as
cg = p + kdp

dk. We do this for varying orders of magnitude of (c− 1) outlined below.

1© (c− 1) = O (ε) 2© (c− 1) = O (4ε) 3© (c− 1) = O (1)

NUMERICAL ANALYSIS

For the symmetric case when c1 = c2 = α1 = α2 = β1 = β2 = 1, we let u = w = z
which results in a reduced equation (after scaling) for which the travelling-wave solution is
known

utt − uxx = ε

(
1

2

(
u2
)
xx

+ uttxx

)
⇒ u =

3
(
v2 − c2

)
α

sech2

(√
v2 − c2

2v
√
β

(x− vt)

)
.

This solution is known as a soliton. We take the initial condition for our system to be
the appropriate soliton in each layer, using the coefficients of the respective layer [3].

We use the pseudo-spectral numerical method to solve the equations. This consists of
taking a Fourier transform to obtain a system of ODEs rather than PDEs. This method
prescribes periodic boundary conditions. The advantage of using this technique
is that it yields high accuracy results and is computationally cheap compared to other
methods.

t = 100 t = 300

1© (c− 1) = O (ε) with coefficients ε = 0.1, c = α = β =
[
1, 1 + ε

2, 1 + ε
]
, δ = [1, 1, 0]

and γ = [0, 1, 1].

t = 100 t = 600

2© (c− 1) = O (4ε) with coefficients ε = 0.1, c = α = β = [1, 1 + 4ε, 1 + ε], δ = [1, 1, 0]
and γ = [0, 1, 1].

t = 50 t = 1, 000

3© (c− 1) = O (1) with coefficients ε = 0.05, c = [1, 2, 3], α = β = [1, 1, 1], δ = [1, 1, 0]
and γ = [0, 1, 1].

The first two cases exhibit radiating solitary waves and the last case exhibits Ostro-
vsky wave packets.

CONCLUSION & FURTHER WORK

Our results are as we may expect based on similar cases for the two-layer system. The
instability of the tail in case 2© suggests the coupling is about to break which could be
a borderline case between 1© and 3©. More research is needed into what features of the
dispersion relation correspond to this change in behaviour of the solution.
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Introduction

Statistical Energy Analysis (SEA) dates back to the 1960s, during which it was used by
aerospace engineers to predict vibrational response to rocket noise of satellite launch air
crafts [1].

SEA incorporates results from fluctuation theory applied to resonators to calculate noise
spectra [2]. Applications of SEA are vast, commonly used in ships and cars, it can be used
for designing and interpreting experiments to understand vibrational issues in a structure
[3].

The aim is to use an SEA model to predict change in vibrational behaviour when the
structure is changed. For this the energies need to be known. Once an equation is derived,
predictions can be made using a matrix system.

The following assumptions are made in standard SEA modelling:
• Rate of energy dissipation by subsystem i is proportional to the energy Ei.

• Rate of power flow from subsystem i to subsystem j is proportional to the difference in
their energies.

• Driving forces on different subsystems are statistically independent - the energy responses
can be added to obtain the total mean modal energy.

Why use SEA?

• SEA proves to trump individual mode analysis due to frequency range rising through
mode series of structure, results are easier to interpret and less parameters are used in
calculations, hence less complicated.

• The use of SEA is more successful as resonance frequency spacing decreases due to an
increased number of modes to average, thus a more reliable estimate of the vibration.
Hence, SEA is only valid for high frequency vibrations.

• SEA only involves inverting a small matrix as opposed to a Monte Carlo model involving
complicated systems of differential equations, making it easier to repeat on a large scale.

Figure 1: A common application is the vibrational energy of a car body, where each
coloured block represents an individual subsystem for which the energy can be found

using SEA [4].

Thermal Analogy

The behaviour of energy in high frequency vibrations and thermal form is identical,
therefore a thermal analogy can be used to easily understand the structure of vibrations.

In thermal diffusion, there are two elements, one supplied with an external heat source,
uniform temperature and each can lose heat via radiation and transfer of energy to the
other elements. The interest here lies in the equilibrium temperature under different
conditions.

Similarly, consider two coupled substructures, e.g: two plates separated by a beam, then
the interest is in the average over the modes and to find the mean modal energy in each
substructure within the frequency range as the ‘temperature’.

The comparative parameters are:

Thermal diffusion model SEA model

Thermal capacity of element Modal density
Radiative loss Damping of vibration modes in the range
Conductivity Measure of strength of mechanical coupling of substructures

Modal approach to SEA

The ODE system for a pair of coupled oscillators may be written as:

m1ẍ1 + M(ẍ1 + ẍ2) + c1ẍ1 + Gẍ2 + k1x1 + K(x1 − x2) = f1 (1)

m2ẍ2 + M(ẍ1 + ẍ2) + c2ẍ2 −Gẍ1 + k2x2 + K(x2 − x1) = f2 (2)

which can be solved using Runge-Kutta methods for example.

We compare the repeated Monte Carlo simulation of this ODE system over a long time
duration, where f1 and f2 are randomly generated by Gaussian white noise, to the prediction
of the mean energy levels given by solving the SEA system:β1k + η1ω1 −βji

. . .

−βji βNk + ηNωN


 〈E1〉

...
〈EN〉

 =

 〈P1〉
...
〈PN〉


with N = 2.

• In order for the SEA system to be accurate, the following parameter assumptions must
hold true: M � m1,m2;K � k1, k2;G� c1, c2 for a system of N coupled oscillators.

• βij and ηiωi can be calculated by use of formulae in [2], pages 73–74.

• The average power 〈Pi〉 for i = 1, 2, is calculated from the input force fi via the power
spectral density [2].

Visualisation

• Due to the random generation of the values for fi, the mean energy fluctuates, so every
time the code is run, a different set of mean energies will be produced.

• The coupled oscillator ODEs are solved using the Runge-Kutta method and hence Monte-
Carlo samples of the mean energy over a time period of 500s are presented.

• We compare the mean of the 1000 Monte-Carlo samples with the SEA prediction.

Figure 2: A test case, plots the graphs when initial parameters are equal as:
m1 = 1,m2 = 1,M = 0, k1 = 1, k2 = 1, K = 0.05, c1 = 0.1, c2 = 0.1, G = 0.001

Figure 3: Displays plots for initial parameters:
m1 = 1,m2 = 1,M = 0, k1 = 1, k2 = 0.5, K = 0.05, c1 = 0.1, c2 = 0.05, G = 0.001
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NEURAL NETWORKS

Neural Networks are a variant of machine learning algorithms that aim to artificially 

mimic the operations which are found in our brains:

At a fundamental level there are two main components: nodes (in place of neurons) 

and their connections, known as 'edges’ (in the place of synapses). Each edge can 

transmit a signal to multiple nodes. The nodes will process this signal and may pass a 

further signal onto other connected nodes.

All inputs are assigned a ‘weight’ which controls the relative impact of each input 

towards the output prediction. This is combined with an unknown bias term in a stage 

known as summation to produce a prediction.

Neural networks consist of three components (as shown in the diagram above), the 

first layer is input data provided to the model and the third layer provides an output 

prediction. The middle layer is known as the ‘hidden layer’, this may contain any 

number of layers, layers can be crossed numerous times before reaching the output 

layer.

In the hidden layers, several non-linear transformation of the input data occur, 

combine with a bias term and undergo an activation function to provide a prediction for 

the output label. These layers are known as hidden because the inner workings are 

not visible to the system.

PROJECT AIM

The purpose of this project was to, using a data set of Brain MRI Images2, create a 

neural network model which correctly identified the images as one of two classes –

those with tumours and those without. This classification (with two possible outcomes) 

is known as binary classification – does the image contain a tumour (1) or not contain 

a tumour (0).

The images came from an unknown source, with 155 images of MRIs with tumours 

and 98 images with no tumours – this means that a model which guesses positively 

100% of the time would get 61.3% accuracy. This is important to consider when 

building as the unbalanced dataset may affect the final model. The assessment metric  

(measure by which we assess the performance of the model) for the neural network 

will be the accuracy of the model: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100

CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks, also known as ConvNets or CNNs are a subset of 

artificial neural networks used where the input data takes the form of images, speech 

or audio signals. Our MRI images are made up from a huge matrix of pixels. For some 

simpler image processing, inputs can be simplified into a vector form. However, in this 

case the location of neighbouring pixels can be incredibly important and so 

vectorisation is not appropriate due to oversimplification.3

IMPLEMENTATION

With all machine learning models, there are a series of parameters which impact

the accuracy, effectiveness and cost of a model. Through adjustment of these 

parameters, we can produce a model which performs well whilst balancing the cost.

There are 23 different parameters which can be adjusted using Sklearn. However, a 

search of all of these would be very exhaustive and inefficient. So instead, I 

researched and selected 3 features which have a significant impact of model 

accuracy:

- Iterations

- Hidden layer size

- Learning Rate

Each feature will have varied impact on the accuracy individually, but there can be a 

significant improvement when ideal combinations of each feature are utilised. To 

search the feature combinations exhaustively, I utilised a built in function called 

GridSearchCV. 

This forms a table with X dimensions (where X is the number of features) and will 

create a version of the model utilising each possibly combinations of the variables – as 

the production of this many models is time exhaustive, I could only use a restricted 

range of potential options. Utilising this, I then produced a final optimised model and 

predicted unseen labels for all the test set data to test the performance of this model.

RESULTS

Utilising the below accuracy calculation

equation, I calculated the model accuracy

for predicting the testing data labels to be

87.76% to 2 decimal places. This 

indicates that the model is performing 

well and is very positive.

Through viewing the individual mistaken

predictions, many false positives include

larger areas of white which could plausibly

be mistaken for tumours – something 

which would probably improve in future versions. 

[1] = Data Flair, 2018. Artificial Intelligence vs Machine Learning vs Deep Learning vs Data Science. [Online] Available at: https://data-

flair.training/blogs/artificial-intelligence-vs-machine-learning-vs-dl-vs-ds/ [Accessed September 2021]

[2] = Chakrabarty, N., 2019. Brain MRI Images for Brain Tumour Detection. Kaggle Data. [Online] Available at: https://www.kaggle.com/navoneel/brain-mri-

images-for-brain-tumor-detection [Accessed August 2021]

[3] = Rocco, I., Arandjelovic, R. & Sivic, J., 2017. Convolutional neural network architecture for geometric matching. CVPR - IEEE Xplore, Volume IV, pp. 6148-

6157.

[4] = Zhang, C., Zhou, P., Li, C. & Liu, L., 2015. A Convolutional Neural Network for Leaves Recognition Using Data Augmentation. IEEE International 

Conference on Computer and Information Technology, pp. 2143-2150.

Fig 2 & 3 :(left) two of the MRI scans from the data set with no tumours

Fig 4 & 5 :(right) two of the MRI scans from the data set with tumours

Fig 6: A confusion matrix showing the prediction 

results of the convolution neural network with tuned 

parameters

FUTURE WORK

Given more time, and additional computing power, I feel that I could improve the 

model produced during this internship. Although an accuracy of 87.76% is good, there 

is the opportunity to improve the model for future work.

The most obvious limiting factor to the development of this model was the 

insubstantial available data. The provision of subsequent larger datasets will allow for 

the model to process more types of tumour – as the tumour location, size and colour 

varies from image to image. Or alternatively, in the future I could utilise data 

augmentation to “increase” the sample size.

Alternatively, narrowing the types of tumour that are being detected would improve 

accuracy as it would decrease variation in imagery – for instance, only looking at 

frontal lobe tumours.

Experimentation is also something that was restricted due to time in this project, as 

stated above there were 20 parameters which I did not have the opportunity to adjust 

within the model – this offers the possibility for future development and expansion.

CONVOLUTIONAL NEURAL NETWORKS (CONTINUED)

For this instance, the input image vector has several unique filters applied in order to 

create many feature maps to summarize the features detected in the imagery. These 

feature maps, or convolution layers undergo a stage known as ‘pooling’ in which the 

layers are adjusted minutely to prevent invariance. All of these inputs are flattened 

before being passed through a typical neural network. 

Fig 1: Comparison of a neuron in a human brain and an artificial neural network1

https://data-flair.training/blogs/artificial-intelligence-vs-machine-learning-vs-dl-vs-ds/
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INTRODUCTION

The Navier-Stokes equations are some of the hardest equations to solve both analytically and computa-
tionally; so much so that proving existence and smoothness of solutions is one of the millennium problems,
offering a $1 million prize if solved [1]. They are fundamental to understanding fluid dynamics as a whole.

The Navier-Stokes equations are mathematical statements for the conservation of momentum, and
the conservation of mass, within Newtonian fluids.

The shallow water equations are derived from these, and the equations under analysis are

∂ω

∂t
+ [ψ, ω] = v∇2ω (1)

∇2ψ = ω, (2)

where

[ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
.

Here,
• ψ denotes the streamfunction,

• ω denotes the fluid vorticity, and

• ν denotes the fluid viscosity.
Reference [1]: Clay Mathematics Institute, n.d. Available at: https://www.claymath.org/millennium-problems/navier-stokes-equation

DERIVATION

The applications of shallow water equations are that they can be used to model waves in lakes, rivers, and
even the atmosphere and gravitational waves. For them to work, one of the main assumptions when modelling
phenomena is that the wavelength affecting the fluid must be much larger than the depth of the
basin containing the fluid. Let us assume we have a fluid bounded between x ∈ [x1, x2] and y ∈ [y1, y2].
The below diagram shows a basic representation of this.

L

D
x1

x2

y1

y2

Here, we require that δ = D/L << 1. We also note that the system has the following properties:

• some velocity field ~v =
(
u v w

)T
, and

• some vorticity field ~Ω =
(
ωx ωy ωz

)T
.

Since we are only interested in the vorticity in the x − y plane, we take ω = ωz. Since ω = ∇ × ~u, we see
that ω = ∂v

∂x −
∂u
∂y .

Conservation of Mass
The mass of the system at any time t is defined to be

M =

∫ x2

x1

∫ y2

y1

ρ(x, y)h(x, y, t) dxdy, (3)

where ρ is the density of the fluid at any point in space, and h is the height above the base at time t at any
point in space. Taking the partial derivative across equation (3) with respect to time yields the rate of change
of mass across the whole system, the flux in the x direction, and the flux in the y direction. Applying the
fundamental theorem of calculus and noting that mass must be conserved yields the following result:

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0 =⇒ ∂u

∂x
+
∂v

∂y
= 0, (4)

assuming h to be constant.

Conservation of Momentum
The two resulting equations are derived directly from the Navier-Stokes equations, and are as below:

∂(uh)

∂t
+
∂

∂x

(
hu2 +

1

2
gh2
)

+
∂(huv)

∂y
= fhv, (5)

∂(vh)

∂t
+
∂

∂y

(
hv2 +

1

2
gh2
)

+
∂(huv)

∂x
= −fhu. (6)

Bringing these together...
Differentiating equations (5) and (6) with respect to t, subtracting (6) from (5) and utilising previous definitions,
we arrive at the result

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 0. (7)

By introducing the definition of the streamfunction ψ as

u = −∂ψ
∂y

; v =
∂ψ

∂x
, (8)

we arrive at the desired result in (1). By also differentiating u and v with respect to t, we arrive at the result
shown in equation (2).

What do these equations represent?
Equation (1) is known as the advection-diffusion equation and describes how waves move with relation to
vorticity and how they dissipate over time. Equation (2) describes the streamfunction in terms of the vorticity,
and this ensures that the fluid is incompressible, i.e. ∇ · F = 0 for all x, y.

FINITE DIFFERENCE METHODS

Here, we require the discretisation of equations (1) and (2). This will involve deriving numerical schemes with
the aim of simulating various situations using MATLAB. This can be done by time-stepping using Euler’s
method, and space-stepping using central difference approximations. To begin, we use equation (2) to define an
initial streamfunction ψ0(x, y) given an initial vorticity ω0(x, y). Then, we advance in time by using equation (1).

Discretisation
To fully discretise the system of equations, we consider an M × N meshgrid. We need to use the formulae
for the central difference approximation on the Laplacian ∇2ψ = ω, which is an elliptic PDE. This expands to
ψxx + ψyy = ω. This leads to the following central difference:

∂2ψ

∂x2
≈ ψ(x + ∆x, y, t)− 2ψ(x, y, t) + ψ(x−∆x, y, t)

∆x2
. (9)

The formula is very similar in the case of ψyy. This reduces to

ψ(m−1)n + ψm(n−1) − 4ψmn + ψ(m+1)n + ψm(n+1) = δ2ωmn. (10)

At the boundaries, we also have that ψ1n = ψ(M+1)n and ψm1 = ψm(N+1). From this, we can derive a single
block matrix to represent the Laplacian as an operation. We also must derive matrices for the first derivatives
in equation (1). These matrices are then plugged back in to yield

∂ω

∂t
= νA~ω + B~ψ · C~ω − C ~ψ ·B~ω. (11)

MATLAB Implementation
The above was scripted into MATLAB to run simulations on a 128× 128 grid with initial vorticity ω0(x, y) =
exp
(
−2x2 − y2/20

)
and viscosity ν = 0.001. Simulations are shown below:

Fig. 1: 50-second evolution Fig. 2: Initial profile

SPECTRAL METHODS

For this method, we make use of the Fast Fourier Transform algorithm (”FFT”). This is a method that requires
knowledge of more advanced mathematics, but it is a lot quicker computationally than the aforementioned
finite difference method. Here, we begin similarly by generating the same M × N meshgrid, and then taking
the Fourier transform of an initial profile ω0. Using MATLAB, we this initial profile ω0 is already represented
by the meshgrid from before, so the fft2() command is run directly on it. This is then reshaped into a single
column vector to be passed into ode45() to derive a solution.

MATLAB Implementation
Using the initial profile ω0(x, y) = exp

(
−2x2 − y2/20

)
and viscosity ν = 0.001, the following simulation was

run:

Fig. 3: 50-second evolution Fig. 4: Initial profile

Notice that these are very similar to the finite difference simulations shown above. In these spectral simulations,
the ‘arms’ of the waves at t = 37.6 onwards are more crisp, which represents the higher accuracy of this
spectral method.

KEY FINDINGS AND FUTURE WORK

The key findings from this study were that although both spectral and finite difference methods work well for
solving the shallow-water equations, spectral methods are much much faster computationally, as shown:

Description FDM time (s) SPEC time (s)
Single Gaussian 375.34 2.14
Double Gaussian 963.29 4.46
Triple Gaussian >1,200 9.69

Alternate Gaussians >1,200 4.80

We can safely conclude that out of the two methods shown above, Spectral methods are better overall, both
computationally and with regards to accuracy. Future work includes the use of another method, Chebyshev
polynomials, to solve the shallow water equations, and to apply their use to real-world scenarios e.g. storms,
atmospheric movement, etc. and possibly evaluate their use/accuracy against other modelling equations i.e.
Boussinesq, Korteweg-de Vries, etc.

References
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INTRODUCTION

Whilst modelling brain networks, it is vital to grasp the dynamics of our networks ana-
lytically and visually. We set out to research and identify the nature of synchronisation
by utilising ordinary differential equation models of coupled oscillators using data from
various research articles. By utilising the Kuramoto Model to describe neural activity, we
investigated the impact of altering model parameters on synchrony properties of cortical
networks to provide a more tractable model to capture the phenomena of synchrony.

The Kuramoto Model

Firstly, we want to look at the Kuramoto model acting on a network as follows:

dθj
dt

= ωj + S

N∑
k=1

Ajk sin(θk(t)− θj(t)− β), j = 1,2,...,N, (1)

Where θj is the phase of the jth oscillator at time t; ωj is the intrinsic frequency of oscillator
j; N is the total number of oscillators; β is the phase offset and Ajk is the coupling from
oscillator k to j. By utilising the measure of synchrony denoted by R:

Reiθ =
1

N

N∑
j=1

eiθk, (2)

We can in turn simplify model 1 to the following:

dθi
dt

= ωj + RSnj sin(θk(t)− θj(t)− β). (3)

100 oscillator Kuramoto Model for a complete network

Considering oscillators of N = 100 with intrinsic frequency’s generated at random through
a normal distribution in MATLAB, we must integrate our simplified model 3 and hence
plot the result across time producing the following illustration:

We notice that many of our points converge into a synchronised state as time increases
shown through our frequencies moving towards one another. However, to define this sta-
tionary state that our points converge to, we may utilise φ to determine a phase locked
solution. The remaining oscillators will be rotating out of synchrony alongside them. Thus,
φ defines a constant solution within the model and is illustrated as follows:

φj = sin−1

(
4j

Snjrj

)
+ Φ, for j = 1,2,...,N. (4)

This derivation was possible through knowing the difference between our natural frequencies
4j ≡ ωj − Ω, where Ω is our population parameter. Secondly, knowing φj = θj − Ωt.

Finally, to define a fixed point within our model, we may set
∂φj
dt = 0 and permit Φ = θj−Ωt.

Thus, using the knowledge gathered, we return equation 4 and can plot the result over time.

Notably, our widespread frequencies all tend to a fixed solution of 0 in this case; indicating
synchronisation towards a stationary state. This is simply demonstrated graphically by our
frequencies converging to a frequency of 3 as time increases.

Macaque cortical connectivity for 71 nodes

The dynamics of our nodes represent coupled oscillators and the edges between connect to
form a complete network of direct links alongside a phase offset of 0. The cortical connectiv-
ity within the macaque brain consists of 71 nodes of random frequencies. The connectivity
tends towards a phase locked solution. Thus, given a strong enough coupling strength, our
model can asymptotically approach a stable solution obtained via the following:

φj = sin−1

(
4j

Snjrj

)
+ Φ− β, for j = 1,2,...,N (5)

Visually, we can see that our phase φ tends to a constant solution. Thus, we can deduce
that the oscillators either completely synchronise or phase lock. Here, as we can see very
few have not completely synchronised, we infer that the following solution is phase locked.

Network degree for phase lag/lead in neural networks

Finally, we can present the simulation results of our macaque brain data as follows:

From the plot, we are visualising the phase values of our 71 nodes as our coupling strength
increases over time. By aligning our node index in ascending order, we can visualise the
phases by a distinct heat map. We note that the blue colour infers that the nodes of
our macaque data are phase lagging, and the red colour denotes that the nodes are phase
leading. Furthermore, we can analytically depict our phases being maintained whilst our
coupling strength increases over time as follows:

Evidently, given a node within our macaque brain with a large enough degree, our nodes
begins to experience phase lagging.
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What Are Liquid Crystals?

Liquid crystals are an intermediary state between crystalline solids and isotropic liquids.
Introducing an electromagnetic field to these phases has created a multi-billion pound
industry all based on liquid crystal displays (LCDs), which are used in billions of phones,
laptops, PCs, TVs and watches all around the world. The characteristics of liquid crystals
come from the shape, orientation, position, and other properties of their molecules and
how they interact. The most common thermotropic liquid crystals have liquid crystalline
phases existing at a temperature above that of an isotropic fluid but below that of a solid.
The phases of liquid crystals are determined by the order of orientation of their constituent
molecules. The liquid crystals used in industry are usually comprised of a mix of different
types of molecules to increase performance. Examples of these thermotropic liquid crystals
are MBBA and 5CB, which consist of molecules with lengths of 2-3nm.

Here, these molecules that make up a small blob of a liquid crystal are approximately shaped
like rods and can be modelled using ellipsoids of revolution. There are three main phases
of liquid crystals: nematics, smectics and cholesterics. The only phase we are considering
here are nematics. The molecules in the nematic phase have orientational order but no
positional order. This means we can define a mean orientation of these molecules about the
long axis by a unit vector n = n(x,t), at point x and time t, called the director. Smectic
molecules have orientational and some positional order. Cholesteric molecules have a helical
structure with either the long or short axis perpendicular to the director n.

The temperature that the nematic phase exists at is normally achieved through cooling
from a critical temperature. An isotropic liquid is cooled down until the temperature is
below that of the critical temperature, meaning that the molecules go from having no
orientational order to some orientational order. For θ > θc the material is isotropic, for
θm < θ < θc the material is in the nematic phase and finally θ < θm the material could
be a different liquid crystal phase or simply a solid phase. For example MBBA has critical
temperatures θm ≈ 17, θc ≈ 45.

The Order Parameter Q

In order to model a liquid crystal the use of a continuum description is needed. The
necessary variables needed to do this are called order parameters. These describe the
nature and amount of order in a liquid crystal. One order parameter that has already been
introduceds is the director n = n(x, t), a unit vector which describes the mean orientation
of all molecules at a point x at time t. Only static configurations of liquid crystals will
be studied here for simplicity, where the velocity of fluid is negligible. Meaning that the
continuous variables will solely depend on x. Liquid crystal molecules are modelled using an
open bounded region R ⊂ R3 normally shaped like a rod or ellipsoid and all approximately
have a similar shape and symmetry.

The function f (θ), measures the probability of orientation of each molecule in a container.
By averaging the probabilities over a fixed time period, a function f, which has the following
properties will be obtained

•
∫ 2π
0 f (θ) dθ = 1 (total probability is 1)

• f (θ + π) = f (θ) (the molecules have head-to-tail symmetry)

If the orientation of molecules are equally distributed in all directions then an isotropic fluid
is given by f (θ) = 1

2π.
Naturally, one could think to use this function f as an order parameter. However, this
function has an infinite dimension which is impossible to compute. Therefore, an approxi-
mation of f by way of moments is best. The first moment cancels out due to the head-to-tail
symmetry and the second moment is a symmetric tensor M given by

M :=
∫ 2π

0
f (θ)(n(θ)⊗ n(θ)) dθ (1)

A system with no order, has f (θ) = 1
2π, such a system is denoted M0, which is given by 1

2I .
N.B. this is a symmetrical two dimensional matrix with trace 1.

Now, a suitable analogue for M in three dimensions is a matrix with 1
3 on the leading

diagonal. Using M andM0 the Q-tensor order parameter can be calculated which measures
the deviation of M from it’s isotropic value M0:

Q :=
∫ 2π

0
f (θ))(n(θ)⊗ n(θ)− 1

3
I) dθ (2)

Deriving the minimizer of the Q tensor

So far, we have constructed Landau-de Gennes Energy Functional

E[Q] =
∫
Ω

[
L

2
|∇Q|2 + a(θ)

2
tr(Q2) +

c

4
tr(Q2)2

]
dx (3)

or by way of Einstein summation notation

E[Q] =
∫
Ω

[
L

2
∂kQij∂kQij +

a(θ)

2
QijQji +

c

4
(QijQji)

2

]
dx (4)

whereby E : C1[a, b] → R. We wish to derive the minimizer of our energy functional, or
the local extrema by calculating the first variation of E δE(u; v) and allowing v

C1
0 [a, b] = {v ∈ C1

0 [a, b] : v(a) = v(b) = 0} (5)

to be of admissible direction so that we may define the necessary geodesics between our
points. As a result of the above notion, we find that

d

dt
E[Q + tϕ]t=0 =

∫
Ω
L∂kϕij∂kQij + a(θ)tr(Qϕ) + tr(Q2)tr(Qϕ)c dx (6)

and after further calculation and use of the fundamental lemma of the calculus of variations,
we find that

−L∇2Q + aQ + tr(Q̇2)Qc = 0 (7)

defining the necessary PDE for the Q tensor, or the associated Euler-Lagrange equation.
We can take this further by claiming the Q tensor Qλ(x) that models defects in a liquid
crystal is the solution to the above result, given by:

Qλ(x) = S(|x|)
(
x⊗ x− 1

2
|x|2I

)
(8)

such that S : [0,∞] → R is unknown. formally defined as a hedgehog defect, which can
then be used to derive an ODE from the above PDE.

Applications of liquid crystals

One of the major applications of liquid crystals is liquid crystals displays (LCDs). The type
used in displays are twisted nematic. This type of liquid crystal is sandwiched between
two glass plates that have a polarizer attached to them. These polarizers are aligned
perpendicular to each other so that the light that goes through the first polarizer can only
go through the second one if the light is twisted by the liquid crystal. If the light is twisted
correctly then the pixel appears bright. The twisting of the light can be stopped by using
an electric field that is perpendicular to the glass plates. These molecules are then aligned
parallel to the electric field meaning the light is not twisted and the pixel is dark. A diagram
of this can be seen below.

FUTURE WORK & CONCLUSIONS

Given more time, we would have worked through the derivation of the associated ODE

−Ls
′′
(r)− 5L

r
s′(r) + as(r) +

c

2
s(r)3r4 = 0. (9)

This second-order, inhomogeneous, non-linear ode yields a difficult problem to solve. An-
other approach to consider in terms of future work would be to work in 3-dimensions.
Notably, the problem would drastically increase in difficulty and would take longer than
the placement offered to consider thoroughly.

References:
Ball, J.M. (2017). Mathematics and liquid crystals. Molecular Crystals and Liquid Crystals,
[online] 647(1), pp.1–27. doi:10.1080/15421406.2017.1289425.


	Slide Number 1

