Role
Professor Sanei, a Fellow of the British Computer Society, is a professor of signal processing and machine learning and Leader of the Cognitive Computing & Brain Informatics (CCBI) Group. He is the Module Coordinator and Instructor for Wireless Communication (MSc) and Digital Control (MSc) modules. He is the TILT Chair in Machine Learning and the Computer Science Department PhD Research Coordinator.
Career overview
Saeid received his PhD from the Department of Electrical & Electronic Engineering, Imperial College London.
Since then, he has been a member of academic staff in Iran, Singapore, and the United Kingdom (King’s College London, Cardiff University, and the University of Surrey, where he served as the Deputy Head of the Computer Science Department). Currently, he is an Academic Visitor in Digital Health at the Department of Electrical & Electronic Engineering of Imperial College London.
He has also been a visitor to the RIKEN Brain Institute in Japan, a Distinguished Speaker in Nanyang Singapore, and an External Examiner to Glasgow University, London Southbank University, and the University of Mauritius. He is currently a Technical Committee Member of the IEEE Signal Processing Theory and Methods (SPTM) and an Editor and Associate Editor of a number of Journals. In the past, he also served as the Technical Committee Member of the IEEE Machine Learning for Signal Processing (MLSP) and an Associate Editor for the IEEE Signal Processing Letters and IEEE Signal Processing Magazine.
In addition to organising and chairing a number of prestigious international scientific events, he was the organiser and General Chair of the 2019 IEEE International Conference on Acoustic, Speech, and Signal Processing, held in Brighton, UK, with approximately 3200 participants.
Research areas
Saeid's research covers a wide area of cyber-physical systems, including signal processing, artificial intelligence (AI), and machine learning with major applications to biosignals and systems, computer networking, communications, speech and biomedical engineering, automation, brain-computer interfacing (BCI), and IoT. His contributions to tensor factorisation, compressive sensing, hypercomplex systems and cooperative networking have a wide range of applications. He has five books (monographs), a number of edited books and book chapters and over 370 peer-reviewed papers published in top-quartile journals such as IEEE Transactions. The major applications of his research are in healthcare, psychology, smart grid, and automation.
External activity
Professor Sanei is a Fellow of the British Computer Society (FBCS), and since 2018 he has been the Technical Committee Member of the IEEE Signal Processing Theory and Methods (SPTM). He has been a Technical Committee Membe of the IEEE Machine Learning for Signal Processing (MLSP) Committee from 2013-2018. He has often been invited as a Keynote Speaker for prestigious international conferences and to present in workshops in conferences, academia and industry.
Meeting, Workshop and Conference Organisation
- International Chair of The International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM), 2020, Mauritius
- General Chair of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019, Brighton, UK.
- General Chair and Organiser of the 22nd International Conference on Digital Signal Processing, DSP 2017, London, UK
- Honorary Chair, 1st International Conference on Emerging Trends in Electrical, Electronic and Communication Engineering (ELECOM 2016), Mauritius
- Technical Co-Chair of European Signal Processing Conference, EUSIPCO 2016, Budapest, Hungary
- General Chair, IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2013), UK
- Honorary Chair, Third International Conference on Bio-inspired Systems and Signal Processing, 2010, Valencia, Spain
- General Chair of IEEE Statistical Signal Processing Workshop, SSP 2009, Cardiff, UK
- Organising Chair of 17th International Conference on Digital Signal Processing, DSP 2007, Cardiff, UK.
Editorial Activities
- Associate Editor of Journal of Computational Intelligence and Neuroscience
- Associate Editor of Scientia Iranica Transactions on Electrical Engineering (since August 2017)
- Editorial Board Member of Journal of Signals (since March 2017)
- Editorial Board Member of Journal of Neurodevelopment Cognition (since November 2016)
- Guest Editor of the Journal of Bioengineering, Special Issue in Biomedical Signal Processing (since 2016)
- Guest Editor of seven Special Issue on Advances in Biomedical Signal and Image Processing, and Biometrics, Elsevier Journal of Computers and Electrical Engineering (2015-2016)
- Guest Editor of three Sensor Journal Special Issues mainly in AI, Machine Learning, and Sensor Networks
- Guest Editor of Biosensors Journal; Special Issue Intelligent on Biosignal Processing in Wearable and Implantable Sensors
Sponsors and collaborators
Professor Sanei collaborates with many national and international institutions; below are some examples:
- Department of Electrical & Electronic Engineering, Imperial College London
- Department of Clinical Neuroscience, King’s College London
- Department of Electronic Engineering, Royal Holloway University of London
- School of Computer Science and Electronic Engineering (CSEE)
- A-star and Department of Electrical & Electronic Engineering, National University of Singapore
- Skolkovo Institute of Science and Technology, Russia
- Research Center for Human Development (CEDH), Faculdade de Educação e Psicologia, , Porto, Portugal
Publications
Books (monograms):
Sanei S and Chambers J, EEG Signal Processing and Machine Learning, John Wiley & Sons, May 2021, ISBN 1119386942
Sanei S, Jarchi D, Constantinides A G, Body Sensor Networking, Design and Algorithms, John Wiley & Sons, 2020, ISBN-10: 1119390028
Sanei S and Hassani H, Singular Spectrum Analysis of Biomedical Signals, CRC Press, 2015, ISBN-10: 1466589272
Sanei S, Adaptive Processing of Brain Signals, John Wiley & Sons, 2013, ISBN- 10: 0470686138
Sanei S and Chambers J, EEG Signal Processing, John Wiley & Sons, 2007, ISBN-10: 0470025816
Books (editorial)
- S. Sanei, J. Chambers, J. McWhriter, Y. Hicks, and A. G. Constantinides, Proceedings of the 15th Int. Conf. on Digital Signal Processing (Eds.), 2007.
- S. Sanei, J. Chambers, and J. McWhriter, Proceedings of the 2009 IEEE Int. Workshop on Statistical Signal Processing (Eds.), 2009.
- F. Babiloni, A. Cichocki, S. Sanei, L. Astolfi, F. Cincotti, and S. Gonzalez Andino, Computational Intelligence & Neuroscience; Selected papers from the 4th International Conference on Bioinspired Systems and Cognitive Signal Processing, 2011
- S. Sanei, P. Smaragdis, A. Nandi, A. T. S. Ho, and J. Larsen: Proceedings of the International Workshop on Machine Learning for Signal Processing (MLSP)2013, IEEE Press, (Eds.) Sept. 2013.
- P. Fleming, N. Vyas, S. Sanei, and K. Deb, Emerging Trends in Electrical, Electronic and Communications Engineering, Springer 2016.
- P. Fleming, N. Vyas, S. Sanei, K. Deb, and A. Jackobsson, Smart and Sustainable Engineering for Next Generation Applications: Proceeding of the Second International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM 2018), November 28-30, 2018, Mauritius.
Book Chapters
- Islam M.K., Rastegarnia A., Sanei S. (2021) Signal Artifacts and Techniques for Artifacts and Noise Removal. In: Ahad M.A.R., Ahmed M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol 192. pp. 23-79, Springer, Cham. https://doi.org/10.1007/978-3-030-54932-9_2.
- S. Sanei, S. Monajemi, A. Rastegarnia, O. Geman, and S.-H. Ong, “Multitask Cooperative Networks and their Diverse Applications”, Chapters 15-05, Learning Approaches in Signal Processing" Pan Stanford DSP Book Series, 2018 (Editors: Wan-Chi Siu, Lap-Pui Chau, Liang Wang, Tieniu Tan).
- S. Monajemi, S. Ensafi, S. Lu, A. A. Kassim, C. L. Tan, S. Sanei and S-H Ong, “Adaptive Distributed Dictionary Learning for HEp-2 Cell Classification”, In Biomedical Signal Processing in Big Data. Florida, USA: Taylor & Francis Group, LLC, a State of Delaware limited liability company, 2017.
- A. Khalili, A. Rastegarnia, W. M. Bazzi, and S. Sanei, Maximum Correntropy based Distributed Estimation of Adaptive Networks, Advances in Computer Communications and Networks - from Green, Mobile, Pervasive Networking to Big Data Computing, River Publisher, Eds. Aaron Striegel, Min Song, and Kewei Sha, 2016.
- S. Sanei and B. Makkiabadi, Tensor Factorization with Application to Convolutive Blind Source Separation of Speech, Machine Audition: Principles, Algorithms and Systems, IGI-Global Pub., Edited by W. Wang, 2009.
- M. Jing and S. Sanei, Simultaneous EEG-fMRI Analysis with Application to Detection and Localization of Seizure Signal Sources, Recent Advances in Signal Processing, IN-TECH Pub., ISBN 978-953-307-002-5, Edited by A. A. Zaher, 2009.
Recent Journal Papers
H. Azami, S. Sanei, and T. K. Rajji, “Ensemble entropy: A low bias approach for data analysis”, Accepted by Journal of Knowledge-Based Systems, online: Doi. 10.1016/j.knosys.2022.109876.
A. Mobaien, R. Boostani, M. Mohammadi, and S. Sanei, “ERP detection based on smoothness priors”, IEEE Transactions on Biomedical Engineering, Doi. 10.1109/TBME.2022.3204506
N. Goshtasbi, R. Boostani, and S. Sanei, “SleepFCN: A fully convolutional deep learning framework for sleep stage classification using single-channel electroencephalograms,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2088-2096, 2022, DoI. 10.1109/tnsre.2022.3192988
B. Abdi-Sargezeh, A. Valentin, G. Alarcon, D. Martin-Lopez, and S. Sanei, “Sparse common feature analysis for detection of interictal epileptiform discharges from scalp EEG using concurrent intracranial-scalp recordings,” IEEE Access, vol. 10, pp. 49892-49904, doi. 10.1109/ACCESS.2022.3167433.
S. Hashemipour, R. Boostani, and S. Sanei, “Continuous scoring of depression from EEG signals via a hybrid of convolutional neural networks, IEEE Transactions on Neural Systems and Rehabilitation, vol. 30, 176-183, 2022, doi. 10.1109/TNSRE.2022.3143162.
A. Zandbagleh, S. Mirzakuchaki, M. R. Daliri, P. Premkumar, and S. Sanei, “Schizotypy assessment via evaluation of brain connectivity,” Int. Journal of Neural Systems, vol. 32, issue 4, April 2022. Doi. 10.1142/S0129065722500137.
Y. Pourasad, V. Vahidpour, A. Rastegarnia, P. Ghorbanzadeh, S. Sanei, “State estimation in linear dynamical systems by partial update Kalman filtering,” Circuits, Systems, and Signal Processing, 41 (2), 1188-1200, 2022, doi. 10.1007/s00034-021-01815-5.
V. Vahidpour, A. Rastegarnia, A. Khalili, W. M. Bazzi, and S. Sanei, “Energy-efficient diffusion Kalman filtering for multi-agent networks in IoT" IEEE Internet of Things Journal, vol. 9, no. 8, 6277-6287, 2022. Doi. 10.1109/JIOT.2021.3111593
B. Abdi-Sargezeh, A. Valentin, G. Alarcon, D. Martin-Lopez, and S. Sanei, “Higher-order tensor decomposition based scalp-to-intracranial EEG projection for detection of interictal epileptiform discharges,” Journal of Neural Engineering 18 (6), 066039, 2021, doi. 10.1088/1741-2552/ac3cc4
S. Afshar, R. Boostani, and S. Sanei, “A combinatorial deep learning structure for precise depth of anaesthesia estimation from EEG Signals,” IEEE Journal of Biomedical and Health Informatics, vol. 25, issue 9, pp. 3408-3415, Doi, 10.1109/JBHI.2021.3068481, Apr. 26, 2021
A. Khalili , V. Vahidpour, A. Rastegarnia, A. Farzamnia, K. Teo Tze Kin, and S. Sanei , “Coordinate-descent adaptation over Hamiltonian multi-agent networks,” Sensors 2021 Nov 20;21(22):7732. doi: 10.3390/s21227732.
S. Sanei, Editorial; A Multidisciplinary and Interdisciplinary Journal for a Wider Community Under a Pioneering Cross-disciplinary Research Leader, International Journal of Neural Systems (IJNS), March 2021.
M. Mahmoodi, B. Makkiabadi, M. Mahmoudi, and S. Sanei, “A new method for accurate detection of movement intention from single channel EEG for online BCI,” Computer Methods and Programs in Biomedicine Update, 2021, 100027, 10.1016/j.cmpbup.2021.100027,
B. Abdi-Sargezeh and S. Sanei, “Advances in epilepsy monitoring by detection and analysis of brain epileptiform discharges,” International Journal of Psychology and Neuroscience, 2021, https://doi.org/10.1037/pne0000275.
P. Modares-Haghighi, R. Boostani, M. Nami, and S. Sanei, “Quantification of pain severity using EEG-based functional connectivity,” Elsevier Journal of Biomedical Signal Processing and Control, Volume 69, August 2021, 102840.
A. Pouradabi, A. Rastegarnia, S. Zandi, W. Bazzi and S. Sanei, “A class of diffusion proportionate subband adaptive filters for sparse system identification over distributed networks,” Springer Journal of Circuit, Systems, and Signal Processing, pp. 1-23, 2021, doi. 10.1007/s00034-021-01766-x
S. Afshar, R. Boostani, and S. Sanei, “A combinatorial deep learning structure for precise depth of anaesthesia estimation from EEG Signals,” IEEE Journal of Biomedical and Health Informatics. Doi, 10.1109/JBHI.2021.3068481, Apr. 26, 2021.
B. Abdi-Sargezeh, A. Valentin, G. Alarcon, and S. Sanei, “Incorporating uncertainty in data labelling into automatic detection of interictal epileptiform discharges from concurrent scalp EEG via multi-way analysis, to appear in the International Journal of Neural Systems (IJNS), pp. 1-15, 2021, 10.1142/S0129065721500192.
D. Jarchi, J. Kaler, and S. Sanei, “Lameness detection in cows using hierarchical deep learning and synchrosqueezed wavelet transform,” IEEE Sensors Journal, vol. 21, Issue: 7, April1, 1 2021.
M. K. Islam, A. Rastegarnia, S. Sanei, "Signal Artifacts and Techniques for Artifacts and Noise Removal," In: Ahad M.A.R., Ahmed M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol. 192. Springer, Cham. 2021, doi.10.1007/978-3-030-54932-9_2.
A Khalili, V Vahidpour, A Rastegarnia, WM Bazzi, S Sanei, "Partial Diffusion Kalman Filter with Adaptive Combiners," IEEE Transactions on Aerospace and Electronic Systems, DOI: 10.1109/TAES.2020.3046085.
A Procházka, H Charvátová, O Vyšata, D Jarchi, S Sanei, "Discrimination of cycling patterns using accelerometric data and deep learning techniques," Neural Computing and Applications, Journal of Neural Computing and Applications, 33:7603–7613, 2020, doi. 10.1007/s00521-020-05504-3.
Giv, H., Khalili, A., Rastegarnia, A., and Sanei, S., "A robust adaptive estimation algorithm for Hamiltonian sensor networks,” IEEE Control Systems Letters 5 (4), 1243-1248.
V. Vahidpour, A. Khalili, A. Rastegarnia, W. Bazzi, and S. Sanei, “Variants of partial update augmented CLMS algorithm and their performance analysis,” Accepted (on 07/05/2020) for publication in the IEEE Transactions on Signal Processing, vol. 68, no. 1, pp. 3146-3157, 2020, doi: 10.1109/TSP.2020.2993938.
M. Latifi, A. Khalili, A. Rastegarnia, and S. Sanei, “A robust scalable demand-side management based on diffusion-ADMM strategy for smart grid,” to appear in IEEE Internet of Things (IoT) Journal, vol. 7, no. 4, pp. 3363-3377, DOI. 10.1109/JIOT.2020.2968539.
D. Jarchi, J. Andreu-Perez, M. Kiani, O. Vyšata, J. Kunchynka, A. Procházka, and S. Sanei, “Recognition of patient groups with sleep related disorder using bio-signal processing and deep learning,” Sensors, 20(9) 2594, 2020.
M. Latifi, A. Khalili, A. Rastegarnia, W. M. Bazzi, and S. Sanei, “A self-governed online energy management and trading for smart micro/nano-grids,” To appear in IEEE Transactions on Industrial Electronics, vol. 67, issue 1, pp. 7484-7498, 2020, 10.1109/TIE.2019.2945280.
M. Latifi, A. Khalili, A. Rastegarnia, W. Bazzi, and S. Sanei, “Demand-Side management for smart grid via diffusion adaptation,” IET Smart Grid 3 (1), 69-82, 2020.
H. Azami, S. E. Arnold, S. Sanei, Z. Chang, G. Sapiro, J. Escudero, and A. S. Gupta, “Multiscale fluctuation-based dispersion entropy and its applications to neurological disease,” IEEE Access, vol. 7, no. 1, pp. 68718-68733, 2019, Print ISSN: 2169-3536, DoI: 10.1109/ACCESS.2019.2918560
A. Akbari, M. Trocan, S. Sanei, and B. Granado, “Joint sparse learning with nonlocal and local image priors for image error concealment," IEEE Transactions on Circuits and Systems for Video Technology, (Accepted on June 26, 2019), 10.1109/TCSVT.2019.2927912
V. Vahidpour, M. Latifi, A. Khalili, A. Rastegarnia, and S. Sanei, “Performance analysis of distributed kalman filtering with partial diffusion over noisy network,” To appear in IEEE Transactions on Aerospace and Electronic Systems, 2019, DoI: 10.1109/TAES.2019.2933961
A. Rastegarnia, P. Malekian, A. Khalili, W. M. Bazzi, and S. Sanei, “Tracking Analysis of Minimum Kernel Risk-Sensitive Loss Algorithm Under General Non-Gaussian Noise,” IEEE Transactions on Circuits and Systems II, Vol 66, no. 7, pp. 1262-1266, 2019. DoI: 10.1109/TCSII.2018.2874969
M. Latifi, A. Khalili, A. Rastegarnia, and S. Sanei, “A Distributed game-theoretic demand response with multi-class appliance control in smart grid" Elsevier Journal of Applied Energy, 2019
M. Latifi, A. Khalili, A. Rastegarnia, and S. Sanei, “A Bayesian real-time electric vehicle charging strategy for mitigating renewable energy fluctuations, IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2555-2568, DoI. 10.1109/TII.2018.2866267, May 2019.
A. Prochazka, T. Dostálová, M. Kašparová, O. Vyšata, H. Charvátová, and S. Sanei, “Augmented reality implementations in stomatology,” MDPI Journal of Applied Sciences, Special Issue on Augmented Reality: Current Trends, Challenges and Prospects, Invited review paper, MDPI 2019 (Accepted June 19, 2019).
D. Mandic, P. Djuric, A. Cichocki, C. C. Took, S. Sanei, and L. Hanzo, “Quo Vadis ICASSP – Echoes of the 2019 International Conference on Acoustics, Speech, and Signal Processing, Brighton, UK, 2019; Signal Processing Meets Needs of Modern Humankind.” To appear in IEEE signal Processing Magazine, 2019 (Accepted on June 14, 2019).
V. Vahidpour, A. Rastegarnia, A. Khalili, and S. Sanei, “Partial diffusion Kalman filtering for distributed state estimation in multi-agent networks,” to appear in the IEEE Transactions on Neural Networks and Learning Systems, 2019 (arXiv preprint arXiv:1705.08920).
A. Rastegarnia, P. Malekian, A. Khalili, W. M. Bazzi, and S. Sanei, “Tracking Analysis of Minimum Kernel Risk-Sensitive Loss Algorithm Under General Non-Gaussian Noise,” IEEE Transactions on Circuits and Systems II, Vol 66, no. 7, pp. 1262-1266, 2019. DoI: 10.1109/TCSII.2018.2874969.
A. Antoniades, L. Spyrou, D. Martin-Lopez, A. Valentin, G. Alarcon, S. Sanei, and C. Cheong Took, “Deep neural architectures for mapping scalp to intracranial EEG,” International Journal of Neural Systems, 2018, DOI. 10.1142/S0129065718500090, online.
S. Monajemi, S. Sanei, and S.-H. Ong, “Information credibility over multitask distributed networks,” Elsevier Journal of Future Generation Computer Systems, Special Issue on Measurements and Security of Complex Networks and Systems, vol. 83, pp. 485-495, 2018. https://doi.org/10.1016/j.future. 2017.07.023.
D. Jarchi, J. Pope, T. K. M. Lee, L. Tamjidi, and S. Sanei, “A review on accelerometry based gait analysis and emerging clinical applications,” IEEE Reviews in Biomedical Engineering, vol. 11, issue 1, pp. 177-194, 2018, DOI. 10.1109/RBME.2018.2807182
Z. Yang, W.-K. Ling, R. Tao, L. K. Woo, and S. Sanei “Optimal design of orders of DFrFTs for sparse representations,” IET Signal Processing, Vol. 12, no. 8, pp. 1023-1033, 2018, DOI. 10.1049/iet-spr.2017.0283.
M. Latifi, A. Rastegarnia, A. Khalili, and S. Sanei, “Agent-based decentralized optimal charging strategy for plug-in electric vehicles” IEEE Transactions on Industrial Electronics, pp. 1-13, 2018 DoI. 10.1109/TIE.2018.2853609.
E. Eghlimi, B. Makkiabadi, N. Samadzadehaghdam, H. Khajehpour, F. Mohagheian, and S. Sanei, “A novel underdetermined source recovery algorithm based on k-sparse component analysis, Springer Journal of Circuits, Systems, and Signal Processing, Part of Springer Nature, pp. 1-23, 2018 (https://doi.org/10.1007/s00034-018-0910-9).
A. Prochazka, J. Kuchynka, O. Vysata, M. Schatz, M. Yadollahi, S. Sanei, and M. Valis, “Sleep Scoring using polysomnography data features,” Springer Journal of Signal, Image and Video Processing (SIVP), vol. 12, no. 6, pp. 1-9, 2018, DoI 10.1107/s11760-018-1252-6.
Antoniades A, Spyrou L, Martin-Lopez D, Valentin A, Alarcon G, Sanei S and Cheong Took C, Detection of interictal discharges using convolutional neural networks from multichannel intracranial EEG, IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017, DOI: 10.1109/TNSRE.2017.2755770
Latifi M, Khalili A, Rastegarnia A and Sanei S, Fully Distributed Demand Response Using Adaptive Diffusion Stackelberg Algorithm, IEEE Transactions on Industrial Informatics, 2017, 13(5), 2291-2301, DOI: 10.1109/TII.2017.2703132
Monajemi S, Jarchi D, Ong SH and Sanei S, Cooperative Particle Filtering for Detection and Tracking of ERP Subcomponents from Multichannel EEG, Journal of Entropy, 2017, 19(5), 199, DOI:10.3390/e19050199
Khalili A, Rastegarnia A and Sanei S, Performance analysis of incremental LMS over flat fading channels, IEEE Transactions on Control of Network Systems, 2017, 4(3), 489-498, DOI 10.1109/TCNS.2016.2516826
Khalili A, Rastegarnia A, Bazzi WM and Sanei S, Analysis of incremental augmented affine projection algorithm for distributed estimation of complex-valued signals, Journal of Circuits, Systems & Signal Processing, 2017, 36 (1), 119-136
Monajemi S, Eftaxias K, Ong SH and Sanei S, An informed multitask diffusion adaptation approach to study tremor in Parkinson’s disease, IEEE Journal of Selected Topics in Signal Processing, 2016, 10(7) , 1306-1314
Spyrou L, Lopez DM, Alarcon G, Valentin A and Sanei S, Detection of intracranial signatures of interictal epileptiform discharges from concurrent scalp EEG, International Journal of Neural Systems, 2016, 26(4), DOI: 10.1142/S0129065716500167
Enshaeifar S, Kouchaki S, Cheong Took C and Sanei S, Quaternion singular spectrum analysis of electroencephalogram with application to sleep analysis, IEEE Trans. on Neural Systems & Rehabilitation Engineering, 2016, 24(1), 57 - 67
Wang S, Tang HL, Al Turk LI, Hu Y, Sanei S, Saleh GM and Peto T, Localising microaneurysms in fundus images through singular spectrum analysis, IEEE Trans. on Biomedical Engineering, 2016, 10.1109/TBME.2016.2585344
Khalili A, Rastegarnia A and Sanei S, Tracking performance of incremental augmented complex least mean square adaptive network in the presence of model non-stationarity, IET Signal Processing, 2016, 10 (7), 798-804
Press expertise
- Brain-Computer Interfacing
- Seizure and Mental Health monitoring using EEG
- Audio signal Processing
- Medical images and image processing
- Machine Learning and Pattern Recognition
- Deep Learning, Cooperative Learning, Adversarial Learning, Transfer Learning
- Constrained and regularised algorithms
- Emotion assessment from Speech
- Digital Health
- Rehabilitation Engineering
- EEG-fMRI for Seizure Detection, Localisation and Prediction
- Body Sensor Networking
- Fall prediction
- IoT, Smart Grid and Smart City