Skip to content
Aslihan Klusek

Aslihan Ugun-Klusek

Senior Lecturer

School of Science & Technology

Staff Group(s)
Bioscience

Role

Dr Ugun-Klusek is a Senior Lecturer in Molecular Cell Biology and is part of the Biochemistry teaching team at both undergraduate and postgraduate levels. Dr Ugun-Klusek is module lead for Biology Year 3 tutorial module, co-lead for Undergraduate research project module and she is involved as a lecturer in other modules (eg cell signalling and cancer, cell culture and antibody technology, genetics and immunology). She is a member of Biosciences team and her research aligns with the Health and Wellbeing strategic theme at NTU.

Career overview

2016-2021: Independent Research Fellow (Molecular and Cellular Mechanisms of Human Disease)

2016: Lecturer in Biochemistry, Nottingham Trent University

2008-2016: Research Fellow, Nottingham Trent University

2007-2008: Technical assistant in proteomics, Nottingham Trent University

2008: PhD in ‘The role of 5-Hydroxytryptamine in Pre-eclampsia’, Nottingham Trent University

2003: MSc in Applied Biosciences, Nottingham Trent University

Research areas

Dr Ugun-Klusek’s research focuses on investigating the biochemical and molecular events that drive neurodegeneration and currently she is exploring the role of Monoamine oxidases (MAOs) in this process. MAOs are mitochondrial enzymes that play a key role in maintaining neurotransmitter levels in the brain but also important in redox homeostasis because they generate reactive oxygen species (ROS) as a catalytic by-product. ROS can chemically modify proteins and alter their biological functions. If not cleared, oxidatively damaged proteins may become cytotoxic. Neurons are particularly vulnerable to ROS and mitochondrial dysfunction due to their high energy demand. Dr Ugun-Klusek’s current research is focusing on investigating the effect of MAO-A generated ROS on mitochondrial health and protein degradation signalling in the context of neurodegeneration. The long-term aim is to identify molecular pathways that control mitochondrial function and neuronal health/survival.

Dr Ugun-Klusek also interested in investigating the role of MAO-A in other pathological conditions such as cancers and the application of proteomics techniques to study disease mechanisms.

Current Research Areas:

  • Role of monoamine oxidase A (MAO-A) in the control of protein degradation and neuronal cell death
  • Mitochondrial function and signalling in neuronal death
  • A study of secretome using a cellular oxidative stress model
  • A study of monoamine oxidase A (MAO-A) interaction mapping

If you are interested in carrying out a PhD in the research areas listed above or any related areas, please feel free to contact (aslihan.ugun-klusek@ntu.ac.uk) for further information. A programme of fully-funded PhD studentships at NTU is now open for application until the 14 January 2022.

Project titles:

Why neurons die? The role of monoamine oxidases (MAOs) in selective vulnerability of brain cells

Healthy brain ageing- The Role of Flavonoids in the Modulation of Monoamine Oxidases (MAOs)

Opportunities arise to carry out postgraduate research towards an MPhil / PhD in the areas identified above. Further information may be obtained on the NTU Research Degrees website https://www.ntu.ac.uk/research/research-degrees-at-ntu.

External activity

Member of Biochemical society

Invited member of The Society for Redox Biology and Medicine (SfRBM)

Reviewer for Free Radical Biology & Medicine, Diabetologia, Brain Research Bulletin, Journal of the Neurological Sciences, Cancers

Sponsors and collaborators

Current and recent research is being conducted with the collaboration of:

  • Dr Miquel Àngel Pujana, ProCURE, Catalan Institute of Oncology, IDIBELL, Barcelona, Catalonia, Spain
  • Dr J Fitzgerald, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
  • Dr Florence Burte, Wolfson Childhood Cancer Research Centre, Newcastle University, UK
  • Dr Patrick Yu-Wai-Ma, MRC Mitochondrial Biology Unit and Cambridge Centre for Brain Repair, University of Cambridge, UK

Current and past Sponsors include:

  • Nottingham Trent University Independent Research Fellowship Scheme (2016-2021)
  • NTU Short Summer Studentships (2014, 2016 and 2017)
  • Biochemical Society Early Career Member Bursary (2017)
  • Queen’s Anniversary Award, PhD Studentship ‘New molecular pathways linking the mitochondrial enzyme monoamine oxidase to neuronal cell death or survival’ (2017-2021) (supervisor)
  • Neuroscience Support Group at the Queen's Medical Centre, Funding for a PhD ‘Investigating the role of neuroinflammation in neurodegenerative disease’ (2017-2021) (collaborator)

Publications

Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson SR, Miller S, García N, Capellades J, Gómez A, Vidal A, Palomero L, Espín R, Extremera AI, Blommaert E, Revilla-López E, Saez B, Gómez-Ollés S, Ancochea J, Valenzuela C, Alonso T, Ussetti P, Laporta R, Xaubet A, Rodríguez-Portal JA, Montes-Worboys A, Machahua C, Bordas J, Menendez JA, Cruzado JM, Guiteras R, Bontoux C, La Motta C, Noguera-Castells A, Mancino M, Lastra E, Rigo-Bonnin R, Perales JC, Viñals F, Lahiguera A, Zhang X, Cuadras D, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Filippakis H, Hakem R, Gorrini C, Ferrer M, Ugun-Klusek A, Billett E, Radzikowska E, Casanova Á, Molina-Molina M, Roman A, Yanes O, Pujana MA. EMBO Mol Med. 2021, 13(9):e13929. doi: 10.15252/emmm.202113929.

Multiomic analysis of stretched osteocytes reveals processes and signalling linked to bone regeneration and cancer. Santos L, Ugun-Klusek A, Coveney C, Boocock DJ. NPJ Regen Med. 2021, 6(1):32. doi: 10.1038/s41536-021-00141-3.

Hypoxia Signaling in Parkinson's Disease: There Is Use in Asking "What HIF?" Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. . Biology (Basel). 2021,10(8):723. doi: 10.3390/biology10080723.

Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. Bus C, Zizmare L, Feldkaemper M, Geisler S, Zarani M, Schaedler A, Klose F, Admard J, Mageean CJ, Arena G, Fallier-Becker P, Ugun-Klusek A, Maruszczak KK, Kapolou K, Schmid B, Rapaport D, Ueffing M, Casadei N, Krüger R, Gasser T, Vogt Weisenhorn DM, Kahle PJ, Trautwein C, Gloeckner CJ, Fitzgerald JC. iScience, 2020, 23(12):101797. doi: 10.1016/j.isci.2020.101797.

Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation. Ugun-Klusek A, Theodosi TS, Fitzgerald JC, Burté F, Ufer C, Boocock DJ, Yu-Wai-Man P, Bedford L, Billett EE. Redox Biology, 2019, 20,167-181. doi: 10.1016/j.redox.2018.10.003

Dynamic metabolic patterns tracking neurodegeneration and gliosis following 26S proteasome dysfunction in mouse forebrain neurons. Geiszler PC, Ugun-Klusek A, Lawler K, Pardon MC, Yuchun D, Bai L, Daykin CA, Auer DP, Bedford L. Sci Rep, 2018, 8(1), 4833. doi: 10.1038/s41598-018-23155-2.

Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Ugun-Klusek A, Tatham MH, Elkharaz J, Constantin-Teodosiu D, Lawler K, Mohamed H, Paine SM, Anderson G, John Mayer R, Lowe J, Ellen Billett E, Bedford L. Cell Death Dis, 2017, 8(1):e2531. doi: 10.1038/cddis.2016.443.

Serotonin receptor 6 mediates defective brain development in monoamine oxidase A-deficient mouse embryos. Wang CC, Man GC, Chu CY, Borchert A, Ugun-Klusek A, Billett EE, Kühn H, Ufer C. J Biol Chem, 2014, 289 (12), 8252-63. doi: 10.1074/jbc.M113.522094.

Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins. Fitzgerald JC, Ugun-Klusek A, Allen G, De Girolamo LA, Hargreaves I, Ufer C, Abramov AY and Billett EE, The FASEB Journal, 2014, 28(1):218-29. doi: 10.1096/fj.13-235481

Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Elkharaz J, Ugun-Klusek A, Constantin-Teodosiu T, Lawler K, Mayer RJ, Billett E, Lowe J, Bedford L, Biochim Biophys Acta. 2013, 1832 (12), 1930-1938. doi:10.1016/j.bbadis.2013.07.002.

Reduced placental vascular reactivity to 5-hydroxytryptamine in pre-eclampsia and the status of 5HT2A receptors. Ugun-Klusek A, Tamang A, Loughna P, Billett E, Buckley G and Sivasubramaniam S, Vascular Pharmacology, 2011, 55 (5-6), 157-162. doi: 10.1016/j.vph.2011.07.006

Monoamine oxidase a expression is vital for embryonic brain development by modulating developmental apoptosis.Wang CC, Borchert A, Ugun-Klusek A, Tang LY, Lui WT, Chu CY, Billett E, Kuhn H and Ufer C, The Journal of Biological Chemistry, 2011, 286 (32), 28322–28330. doi: 10.1074/jbc.M111.241422.

See all of Aslihan Ugun Klusek's publications...