Role
Lee is Associate Professor in Materials Chemistry.
Lee teaches on the following modules:
- Inorganic Bonding and Solid-State Materials
- Inorganic Chemistry
- Advanced Inorganic Chemistry
- Advanced Chemistry
- Research Methods
- Professional Development
- BSc Project
- MChem/MSc/MRes Project
Career overview
Lee completed his PhD in Materials Chemistry at the Royal Institution of Great Britain, and he was awarded the Ramsay Medal by University College London in 1998. After working for the International Union of Crystallography and The Royal Society of Chemistry he returned to the Davy Faraday Research Laboratory at the Royal Institution of Great Britain as a postdoctoral research assistant in the group of Professor Peter Day.
Lee’s first chemistry lecturer position was at Nottingham Trent University (Sep 2007-Sep 2010) before he took up a permanent Senior Lecturer in Chemistry role at University of Hertfordshire (Sep 2010-Jan 2012). He returned to Nottingham Trent University in January 2012 as Senior Lecturer in Inorganic Chemistry and Admissions Tutor.
Lee was awarded a Royal Society Leverhulme Trust Senior Research Fellowship for October 2017-September 2018.
Research areas
Areas of research interest include:
- Structure-property relationships
- Crystal growth and molecular assembly
- Coordination chemistry - boron, d and f block
- Spontaneous chiral resolution
- 2D materials
- Chiral conductors
- Molecular superconductors
- Spin liquids
- Spin crossover
Opportunities to carry out postgraduate research towards an MPhil / PhD exist in the areas identified above. Further information may be obtained from the NTU Graduate School.
External activity
- Fellow of the Higher Education Academy (FHEA)
Sponsors and collaborators
Recent research has been supported by The Royal Society, The Leverhulme Trust, Japan Society for Promotion of Science, Daiwa Anglo-Japanese Foundation, The Great Britain Sasakawa Foundation, The Nuffield Foundation, and The Royal Society of Chemistry.
Lee collaborates widely, including
Publications
MARTIN, L., WALLIS, J.D. and OGAR, J.O., 2025, Chirality in Molecular Conductors from Enantiopure or Racemic Coordination Complexes, Dalton Transactions. ISSN 1477-9234
BLUNDELL, T.J., SNEADE, K., OGAR, J.O., YAMASHITA, Y., AKUTSU, H., NAKAZAWA, Y., YAMAMOTO, T. and MARTIN, L., 2025. 2D Quantum Spin-Liquid Candidate including a chiral anion. Journal of the American Chemical Society. ISSN 0002-7863
OGAR, J.O., WALLIS, J.D., BLUNDELL, T.J., RUSBRIDGE, E.K., MANTLE, A., AKUTSU, H., NAKAZAWA, Y., IMAJO, S. and MARTIN, L., 2025. Spontaneous resolution of the Fe(C2O4)3 anion and inclusion of chiral guest molecules in BEDT-TTF radical-cation salts.Inorganic Chemistry, 64 (2), pp. 1075-1084. ISSN 0020-1669
HOWARTH, E., LOPEZ, J., OGAR, J.O., BLUNDELL, T.J., AKUTSU, H., NAKAZAWA, Y., IMAJO, S., IHARA, Y., COLES, S.J., HORTON, P.N., CHRISTENSEN, J. and MARTIN, L., 2025. Radical-cation salts of BEDT-TTF with tris-coordinated racemic dysprosium(iii) and terbium(iii) anions.Dalton Transactions. ISSN 1477-9226
SHORT, J.I., RUSHBRIDGE, E.K., BLUNDELL, T.J., OGAR, J.O., YANG, S., WALLIS, J.D. and MARTIN, L., 2024. A series of enantiopure BEDT-TTF-acetamide derivatives with two stereogenic centres.New Journal of Chemistry. ISSN 1144-0546
OGAR, J.O., BLUNDELL, T.J., USMAN, R., VAVROVIČ, M. and MARTIN, L., 2024. Chiral and racemic BINOL spiroborate anions and radical-cation salt with BEDT-TTF.Polyhedron, 264: 117262. ISSN 0277-5387
BLUNDELL, T.J., OGAR, J.O., BRANNAN, M.J., RUSBRIDGE, E.K., WALLIS, J.D., AKUTSU, H., NAKAZAWA, Y., IMAJO, S. and MARTIN, L., 2024. BEDT-TTF radical-cation salts with tris(oxalato)chromate and guest additives.RSC Advances, 14 (26), pp. 18444-18452. ISSN 2046-2069
BLUNDELL, T.J., RUSBRIDGE, E.K., PEMBERTON, R.E., BRANNAN, M.J., MORRITT, A.L., OGAR, J.O., WALLIS, J.D., AKUTSU, H., NAKAZAWA, Y., IMAJO, S. and MARTIN, L., 2024. Introduction of new guest molecules into BEDT-TTF radical-cation salts with tris(oxalato)ferrate.CrystEngComm, 26 (14), pp. 1962-1975. ISSN 1466-8033
LARAMEE, B., GHIMIRE, R., GRAF, D., MARTIN, L., BLUNDELL, T.J. and AGOSTA, C.C., 2023. Superconductivity and fermi surface studies of β"-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6.Magnetochemistry, 9 (3): 64. ISSN 2312-7481
BLUNDELL, T.J., MORRITT, A.L., RUSBRIDGE, E.K., QUIBELL, L., OAKES, J., AKUTSU, H., NAKAZAWA, Y., IMAJO, S., KADOYA, T., YAMADA, J.-I., COLES, S.J., CHRISTENSEN, J. and MARTIN, L., 2022. Molecular conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)gallate and tris(oxalato)iridate.Materials Advances. ISSN 2633-5409
BLUNDELL, T.J., LOPEZ, J.R., SNEADE, K., WALLIS, J.D., AKUTSU, H., NAKAZAWA, Y., COLES, S.J., WILSON, C. and MARTIN, L., 2022. Enantiopure and racemic radical-cation salts of B(mandelate)2− and B(2-chloromandelate)2− anions with BEDT-TTF.Dalton Transactions, 51, pp. 4843-4852. ISSN 1477-9226
ATTWOOD, M., AKUTSU, H., MARTIN, L., BLUNDELL, T.J., LE MAGUERE, P. and TURNER, S.S., 2021. Exceptionally high temperature spin crossover in amide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complex revealed by variable temperature Raman spectroscopy and single crystal X-ray diffraction.Dalton Transactions. ISSN 1477-9226
BLUNDELL, T.J., BRANNAN, M., MBURU-NEWMAN, J., AKUTSU, H., NAKAZAWA, Y., IMAJO, S. and MARTIN, L., 2021. First molecular superconductor with the tris(oxalato)aluminate anion, β″-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, and isostructural tris(oxalato)cobaltate and tris(oxalato)ruthenate radical cation salts.Magnetochemistry, 7 (7): 90. ISSN 2312-7481
BLUNDELL, T.J., BRANNAN, M., NISHIMOTO, H., KADOYA, T., YAMADA, J.-I., AKUTSU, H., NAKAZAWA, Y. and MARTIN, L., 2021. Chiral metal down to 4.2 K - a BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2−. Chemical Communications, 57, 5406–5409.
ATTWOOD, M., AKUTSU, H., BLUNDELL, T. J, MARTIN, L., LEMAGUERE, P. and TURNER, S.S., 2021. Exceptionally High Temperature Spin Crossover in Amide-Functionalised 2,6-bis(pyrazol-1-yl)pyridine Iron(II) Complex Revealed by Variable Temperature Raman Spectroscopy, Dalton Transactions.
BLUNDELL, T.J., BRANNAN, M., MBURU-NEWMAN, J., AKUTSU, H., NAKAZAWA, Y., IMAJO, S. and MARTIN, L., 2021. First molecular superconductor with the tris(oxalato)aluminate anion, β″-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, and isostructural tris(oxalato)cobaltate and tris(oxalato)ruthenate radical cation salts. Magnetochemistry, 7 (7): 90. ISSN 2312-7481
SHORT, J., BLUNDELL, T.J., YANG, S., SAHIN, O., SHAKESPEARE, Y., SMITH, E.L., WALLIS, J.D. and MARTIN, L., 2020. Synthesis and structures of polyiodide radical cation salts of donors combining tetrathiafulvalene with multiple thiophene or oligo-thiophene substituents. CrystEngComm, 2020, 22, 6632-6644
SHORT, J., BLUNDELL, , T.J., KRIVICKAS, S., YANG, S., WALLIS, J.D., AKUTSU, H., NAKAZAWA, Y. and MARTIN, L., 2020. Chiral molecular conductor with an insulator-metal transition close to room temperature.Chemical Communications. ISSN 1359-7345
IMAJO, S., AKUTSU, H., AKUTSU-SATO, A., MORRITT, A.L., MARTIN, L. and NAKAZAWA, Y., 2019. Effects of electron correlations and chemical pressures on superconductivity of β''-type organic compounds.Physical Review Research, 1 (3): 033184. ISSN 2643-1564
MORRITT, A.L., LOPEZ, J.R., BLUNDELL, T.J., CANADELL, E., AKUTSU, H., NAKAZAWA, Y., IMAJO, S. and MARTIN, L., 2019. 2D molecular superconductor to insulator transition in the β"-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3]·18-crown-6 Series (M = Rh, Cr, Ru, Ir).Inorganic Chemistry. ISSN 0020-1669
ATTWOOD, M., AKUTSU, H., MARTIN, L., CRUICKSHANK, D. and TURNER, S., 2019. Above room temperature spin crossover in thioamide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complexes.Dalton Transactions. ISSN 1477-9226
MARTIN, L., 2018. Molecular conductors of BEDT-TTF with tris(oxalato)metallate anions.Coordination Chemistry Reviews, 376, pp. 277-291. ISSN 0010-8545
MARTIN, L., LOPEZ, J.R., AKUTSU, H., NAKAZAWA, Y. and IMAJO, S., 2017. Bulk Kosterlitz–Thouless type molecular superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6.Inorganic Chemistry. ISSN 0020-1669
BASSIN, J.P., BOTHA, M., GARIKIPATI, R., GOYAL, M., MARTIN, L. and SHAH, A., 2017. Synthesis and antibacterial activity of benzo[4,5]isothiazolo[2,3-a]pyrazine-6,6-dioxide derivatives.Molecules, 22 (11), p. 1889. ISSN 1420-3049
LOPEZ, J.R., MARTIN, L., WALLIS, J.D., AKUTSU, H., YAMADA, J., NAKATSUJI, S., WILSON, C., CHRISTENSEN, J. and COLES, S.J., 2017. New semiconducting radical-cation salts of chiral bis(2-hydroxylpropylthio)ethylenedithio TTF.CrystEngComm, 19 (32), pp. 4848-4856. ISSN 1466-8033
MARTIN, L., MORRITT, A.L., LOPEZ, J.R., NAKAZAWA, Y., AKUTSU, H., IMAJO, S., IHARA, Y., ZHANG, B., ZHANG, Y. and GUO, Y., 2017. Molecular conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)rhodate.Dalton Transactions, 46 (29), pp. 9542-9548. ISSN 1477-9226
MARTIN, L., WALLIS, J.D., GUZIAK, M., MAKSYMIW, P., KONALIAN-KEMPF, F., CHRISTIAN, A., NAKATSUJI, S., YAMADA, J. and AKUTSU, H., 2017. Enantiopure and racemic radical-cation salts of bis(2’-hydroxylpropylthio)(ethylenedithio)TTF with polyiodide anions.Dalton Transactions. ISSN 1477-9226
MARTIN, L., MORRITT, A.L., LOPEZ, J.R., AKUTSU, H., NAKAZAWA, Y., IMAJO, S. and IHARA, Y., 2017. Ambient-pressure molecular superconductor with a superlattice containing layers of tris(oxalato)rhodate enantiomers and 18-crown-6.Inorganic Chemistry. ISSN 0020-1669
PATEL, C., BASSIN, J., SCOTT, M., FLYE, J., HUNTER, A., MARTIN, L. and GOYAL, M., 2016. Synthesis and Antimicrobial Activity of 1,2-Benzothiazine Derivatives.Molecules, 21 (7), p. 861. ISSN 1420-3049
LOPEZ, J.R., MARTIN, L., WALLIS, J.D., AKUTSU, H., NAKAZAWA, Y., YAMADA, J.I., KADOYA, T., COLES, S.J. and WILSON, C., 2016. Enantiopure and racemic radical-cation salts of B(malate)2−anions with BEDT-TTF.Dalton Transactions, 45 (22), pp. 9285-9293. ISSN 1477-9226
WANG, Q., MARTIN, L., BLAKE, A.J., DAY, P., AKUTSU, H. and WALLIS, J.D., 2016. Coordination chemistry of 2,2′-bipyridyl- and 2,2′:6′,2″-terpyridyl-substituted BEDT-TTFs: formation of a supramolecular capsule motif by the iron(II) tris complex of 2,2′-bipyridine-4-thiomethyl-BEDT-TTF. Inorganic Chemistry, 55 (17), pp. 8543-8551. ISSN 0020-1669
LOPEZ, J.R., AKUTSU, H. and MARTIN, L., 2015. Radical-cation salt with novel BEDT-TTF packing motif containing tris(oxalato)germanate(IV). Synthetic Metals, 209, pp. 188-191. ISSN 0379-6779
MARTIN, L., AKUTSU, H., HORTON, P.N., HURSTHOUSE, M.B., HARRINGTON, R.W. and CLEGG, W., 2015. Chiral radical-cation salts of BEDT-TTF containing a single enantiomer of tris(oxalato)aluminate(III) and -chromate(III). European Journal of Inorganic Chemistry. ISSN 1099-0682
MARTIN, L., AKUTSU, H., HORTON, P.N. and HURSTHOUSE, M.B., 2015. Chirality in charge-transfer salts of BEDT-TTF of tris(oxalato)chromate(III). CrystEngComm, 17 (14), pp. 2771-2904. ISSN 1466-8033
MARTIN, L., YANG, S., BROOKS, A.C., HORTON, P.N., MALE, L., MOULFI, O., HARMAND, L., DAY, P., CLEGG, W., HARRINGTON, R.W. and WALLIS, J.D., 2015. Contrasting crystal packing arrangements in triiodide salts of radical cations of chiral bis(pyrrolo[3,4-d])tetrathiafulvalenes.CrystEngComm, 17 (38), pp. 7354-7362. ISSN 1466-8033
ZECCHINI, M., LOPEZ, J.R., ALLEN, S.W., COLES, S.J., WILSON, C., AKUTSU, H., MARTIN, L. and WALLIS, J.D., 2015. Exo-methylene-BEDT-TTF and alkene-functionalised BEDT-TTF derivatives: synthesis and radical cation salts. RSC Advances, 5 (39), pp. 31104-31112. ISSN 2046-2069
BROOKS, A.C., MARTIN, L., DAY, P., CLEGG, W., HARRINGTON, R.W. and WALLIS, J.D., 2015. New crystal packing arrangements in radical cation salts of BEDT-TTF with [Cr(NCS)6]3− and [Cr(NCS)5(NH3)]2−. Polyhedron, 102, pp. 75-81. ISSN 0277-5387
MARTIN, L., ENGELKAMP, H., AKUTSU, H., NAKATSUJI, S., YAMADA, J., HORTON, P. and HURSTHOUSE, M.B., 2015. Radical-cation salts of BEDT-TTF with lithium tris(oxalato)metallate(III). Dalton Transactions, 44 (13), pp. 6219-6223. ISSN 1477-9234
Superconductivity
Superconductors are materials that conduct electricity with zero resistance without losing any energy and without heat generation. Many real-world applications have already been developed that harness the power of superconductors such as MRI for medical imaging; for generating, carrying and transforming electrical power; for transportation such as magnetically-levitating trains; for high speed and quantum computing as well as for physics research using particle accelerators and magnets.



