Skip to content

Parasitic honeybee mite jolts in the hive and uses vibrations to sense where it is, research suggests

Tiny parasitic mites, which are one the greatest threats to the honeybee, frequently send remarkably strong vibrational pulses into the surface they reside on, a new study has revealed.

Honeybee and mite
Varroa mites feed on adult bees and larvae, passing on a variety of viruses

Scientists at Nottingham Trent University, which led the work, argue that the vibration could be produced for the purpose of ‘environmental probing’, with the mite exploiting the material’s response to the signal to probe its surroundings.

It is hoped that the fundamental discovery could lead to understanding how to manage and possibly even eradicate Varroa destructor mite infestations in the hive.

Using ultra-sensitive accelerometers – which have been able to detect vibrational waveforms originating from one individual mite – the team recorded the repeated knocking of the 1mm creatures, which they do by abruptly jolting their bodies.

The researchers are the first group in the world to capture such vibrational waveform from a mite of any species, which can also be heard as an audio track when driven through speakers.

Varroa mites – which cannot see or hear and weigh about half a milligram – live in honeybee colonies in most parts of the world and feed on adult bees and larvae, passing on a variety of viruses to their hosts and play an important role in the destruction of colonies.

The researchers were looking for vibrational traces coming from honeybees that may be infected but found unexpectedly that the individual mites were providing measurable vibrations of their own.

The vibration that occurs as a result of the mite’s jolting is very short and rapidly produced – taking just 50 to 90 microseconds for the vibration to be transmitted – and the features of the signal vary strongly depending on the material the mite is stood on, providing a ‘signature’ of the substrate.

NTU researchers discuss the new study

“It is known in other species, such as the Aye-Aye and some parasitic wasps, that a signal similar to the one we discovered is produced, so that the animal can gather environmental knowledge,” said Harriet Hall, a researcher in Nottingham Trent University’s School of Science and Technology.

She said: “If a mite becomes dislodged from its honeybee host, this could perhaps help it orientate back to a bee, especially as the animal can’t see or hear. The mite jolting is a commonly observed behaviour that is energetically demanding to produce – another sign that the mite produces this vibration deliberately, for its own benefit.”

It is widely acknowledged that these mites respond to a variety of sensory stimuli such as temperature and pheromones to orient to bees and to synchronise their offspring development with that of the bee, but little research has been carried out in terms of vibration.

The team is now launching a new branch of investigations to help further clarify the purpose of the vibrations. It is hoped that deeper understanding of the function will enable them to manipulate the behaviour to better manage and potentially eradicate the mite from honeybee hives.

It could also have repercussions for the study of other mites and ticks which may use similar signals.

Harriet added: “We could perhaps use the vibrational features of the jolting signal to search for mites in a honeybee colony using our vibration sensing technology, without the need to disturb the bees by physically inspecting the hive. This could lead to a new method of detecting mite infestation early on, enabling beekeepers to medicate their colonies before the mites get out of control or avoid medication altogether, if deemed unnecessary.”

Dr Martin Bencsik, a physicist at Nottingham Trent University, added: “The vibrational pulse coincides with a mite’s abrupt body motion, which has never been seen before and which we have captured and showcased in our work. We have characterised a new behaviour in this species, a discovery so fundamental that it could have numerous and unexpected repercussions.

“For the first time you can see the jolting behaviour, the corresponding accelerometer trace, and even hear the repeated ‘knocks’ produced by this organism that weighs as little as a single strand of human hair and is 200 times lighter than a honeybee.

“It is the first study to show that an individual mite is not only a receiver of vibrations, but also a transmitter of vibrations. On the basis of the vast energy spent by the mite to deliver these, they are probably not by-product vibrations of its activity, but deliberately transmitted by the animal for its own benefit.

“The signal is very common in the hive. We found that the animal is capable of slowly winding up energy in some kind of internal ‘spring’ system than it can then suddenly release, providing a super strong, super short vibrational pulse delivery.”

The work is the latest Nottingham Trent University study looking at honeybee communication in the hive. Previous work has found that Queen bees ‘toot’ to instruct the colony to keep them safe, that honeybees drum on the comb to prompt others in the hive to start getting busy, and that surprised honeybees give ‘whooping signal’ in the hive.

The latest research, published in the journal Entomologia Generalis, also involved the University of Warwick.

  • Notes for editors

    Press enquiries please contact Dave Rogers, Public Relations Manager, on telephone +44 (0)115 848 8782, or via email.

    Nottingham Trent University was named University of the Year 2019 in the Guardian University Awards. The award was based on performance and improvement in the Guardian University Guide, retention of students from low-participation areas and attainment of BME students.

    NTU was also the Times Higher Education University of the Year 2017, and The Times and Sunday Times Modern University of the Year 2018. These awards recognise NTU for its high levels of student satisfaction, its quality of teaching, its engagement with employers, and its overall student experience.

    It is one of the largest UK universities. With over 37,000 students and more than 4,000 staff located across four campuses, the University injects £1.6bn into the UK economy. It has been the largest recruiter of UK undergraduates in each of the last four years. With an international student population of more than 6,000 and an NTU community representing around 160 countries, the University prides itself on its global outlook.

    The university is passionate about creating opportunities and its extensive outreach programme is designed to enable NTU to be a vehicle for social mobility. NTU is among the UK’s top five recruiters of students from disadvantaged backgrounds and was awarded University of the Year in the UK Social Mobility Awards 2019.

Parasitic honeybee mite jolts in the hive and uses vibrations to sense where it is, research suggests

Published on 15 December 2021
  • Subject area: Sciences including sport sciences
  • Category: Press office; Research; School of Science and Technology

Still need help?

+44 (0)115 941 8418